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Cuba

DocTestSetup = quote
    using Cuba
end






Introduction

Cuba.jl [https://github.com/giordano/Cuba.jl] is a
Julia [http://julialang.org/] library for multidimensional numerical
integration [https://en.wikipedia.org/wiki/Numerical_integration] of real-valued
functions of real arguments, using different algorithms.

This is just a Julia wrapper around the C Cuba
library [http://www.feynarts.de/cuba/], version 4.2, by Thomas Hahn.  All
the credits goes to him for the underlying functions, blame me for any problem
with the Julia interface.

All algorithms provided by Cuba library are supported in Cuba.jl:


	Vegas [https://en.wikipedia.org/wiki/VEGAS_algorithm]:

| Basic integration method                                                                | Type                                                                 | Variance reduction [https://en.wikipedia.org/wiki/Variance_reduction]   |
|—————————————————————————————–|———————————————————————-|————————————————————————–|
| Sobol quasi-random sample [https://en.wikipedia.org/wiki/Sobol_sequence]               | Monte Carlo [https://en.wikipedia.org/wiki/Monte_Carlo_integration] | importance sampling [https://en.wikipedia.org/wiki/Importance_sampling] |
| Mersenne Twister pseudo-random sample [https://en.wikipedia.org/wiki/Mersenne_Twister] | ”                                                                    | ”                                                                        |
| Ranlux pseudo-random sample [http://arxiv.org/abs/hep-lat/9309020]                     | ”                                                                    | ”                                                                        |



	Suave

| Basic integration method              | Type        | Variance reduction                                                                                         |
|—————————————|————-|————————————————————————————————————|
| Sobol quasi-random sample             | Monte Carlo | globally adaptive subdivision [https://en.wikipedia.org/wiki/Adaptive_quadrature] and importance sampling |
| Mersenne Twister pseudo-random sample | ”           | ”                                                                                                          |
| Ranlux pseudo-random sample           | ”           | ”                                                                                                          |



	Divonne

| Basic integration method              | Type          | Variance reduction                                                                                                    |
|—————————————|—————|———————————————————————————————————————–|
| Korobov quasi-random sample           | Monte Carlo   | stratified sampling [https://en.wikipedia.org/wiki/Stratified_sampling] aided by methods from numerical optimization |
| Sobol quasi-random sample             | ”             | ”                                                                                                                     |
| Mersenne Twister pseudo-random sample | ”             | ”                                                                                                                     |
| Ranlux pseudo-random sample           | ”             | ”                                                                                                                     |
| cubature rules                        | deterministic | ”                                                                                                                     |



	Cuhre

| Basic integration method | Type          | Variance reduction            |
|————————–|—————|——————————-|
| cubature rules           | deterministic | globally adaptive subdivision |





For more details on the algorithms see the manual included in Cuba
library and available in deps/usr/share/cuba.pdf after successful
installation of Cuba.jl.

Integration is always performed on the n-dimensional unit
hypercube [https://en.wikipedia.org/wiki/Hypercube] [0, 1]^{n}.

!!! tip

If you want to compute an integral over a different set, you have to scale the
integrand function in order to have an equivalent integral on ``[0, 1]^{n}`` using
[substitution
rules](https://en.wikipedia.org/wiki/Integration_by_substitution). For example,
recall that in one dimension

```math
\int_{a}^{b} f(x)\,\mathrm{d}x = \int_{0}^{1} f(a + (b - a) y) (b -
a)\,\mathrm{d}y
```

where the final ``(b - a)`` is the one-dimensional version of the Jacobian.

Integration over a semi-infinite or an inifite domain is a bit trickier, but you
can follow [this
advice](http://ab-initio.mit.edu/wiki/index.php/Cubature#Infinite_intervals)
from Steven G. Johnson: to compute an integral over a semi-infinite interval,
you can perform the change of variables ``x=a+y/(1-y)``:

```math
\int_{a}^{\infty} f(x)\,\mathrm{d}x = \int_{0}^{1}
f\left(a + \frac{y}{1 - y}\right)\frac{1}{(1 - y)^2}\,\mathrm{d}y
```

For an infinite interval, you can perform the change of variables ``x=(2y -
1)/((1 - y)y)``:

```math
\int_{-\infty}^{\infty} f(x)\,\mathrm{d}x = \int_{0}^{1}
f\left(\frac{2y - 1}{(1 - y)y}\right)\frac{2y^2 - 2y + 1}{(1 -
y)^2y^2}\,\mathrm{d}y
```

In addition, recall that for an [even
function](https://en.wikipedia.org/wiki/Even_and_odd_functions#Even_functions)
``\int_{-\infty}^{\infty} f(x)\,\mathrm{d}x =
2\int_{0}^{\infty}f(x)\,\mathrm{d}x``, while the integral of an [odd
function](https://en.wikipedia.org/wiki/Even_and_odd_functions#Odd_functions)
over the infinite interval ``(-\infty, \infty)`` is zero.

All this generalizes straightforwardly to more than one dimension. In
[Examples](@ref) section you can find the computation of a 3-dimensional
[integral with non-constant boundaries](#Integral-with-non-constant-boundaries-1)
using `Cuba.jl` and two [integrals over infinite domains](#Integrals-over-Infinite-Domains-1).





Cuba.jl is available for GNU/Linux, FreeBSD, Mac OS, and Windows (i686 and
x86_64 architectures).




Installation

Cuba.jl is available for Julia 0.7 and later versions, and can be
installed with Julia built-in package
manager [http://docs.julialang.org/en/stable/manual/packages/]. In a
Julia session run the commands

julia> Pkg.update()
julia> Pkg.add("Cuba")





Older versions are also available for Julia 0.4-0.6.




Usage

After installing the package, run

using Cuba





or put this command into your Julia script.

Cuba.jl provides the following functions to integrate:

vegas
suave
divonne
cuhre





Large parts of the following sections are borrowed from Cuba manual.
Refer to it for more information on the details.

Cuba.jl wraps the 64-bit integers functions of Cuba library, in order
to push the range of certain counters to its full extent. In detail, the
following arguments:


	for Vegas: nvec, minevals, maxevals, nstart, nincrease,
nbatch, neval,


	for Suave: nvec, minevals, maxevals, nnew, nmin, neval,


	for Divonne: nvec, minevals, maxevals, ngiven, nextra,
neval,


	for Cuhre: nvec, minevals, maxevals, neval,




are passed to the Cuba library as 64-bit integers, so they are limited
to be at most

julia> typemax(Int64)
9223372036854775807





There is no way to overcome this limit. See the following sections for
the meaning of each argument.


Arguments

The only mandatory argument of integrator functions is:


	integrand (type: Function): the function to be integrated




Optional positional arguments are:


	ndim (type: Integer): the number of dimensions of the
integratation domain. If omitted, defaults to 1 in vegas and
suave, to 2 in divonne and cuhre. Note: ndim must be at
least 2 with the latest two methods.


	ncomp (type: Integer): the number of components of the
integrand. Default to 1 if omitted




integrand should be a function integrand(x, f) taking two arguments:


	the input vector x of length ndim


	the output vector f of length ncomp, used to set the value of
each component of the integrand at point x




x and f are matrices with dimensions (ndim, nvec) and
(ncomp, nvec), respectively, when nvec > 1. See the
Vectorization section below for more information.

Also anonymous
functions [http://docs.julialang.org/en/stable/manual/functions/#anonymous-functions]
are allowed as integrand. For those familiar with Cubature.jl
package, this is the same syntax used for integrating vector-valued
functions.

For example, the integral

\int_{0}^{1} \cos (x) \,\mathrm{d}x = \sin(1) = 0.8414709848078965





can be computed with one of the following commands

julia> vegas((x, f) -> f[1] = cos(x[1]))
Component:
 1: 0.8414910005259609 ± 5.2708169787733e-5 (prob.: 0.028607201257039333)
Integrand evaluations: 13500
Fail:                  0
Number of subregions:  0

julia> suave((x, f) -> f[1] = cos(x[1]))
Component:
 1: 0.8411523690658836 ± 8.357995611133613e-5 (prob.: 1.0)
Integrand evaluations: 22000
Fail:                  0
Number of subregions:  22

julia> divonne((x, f) -> f[1] = cos(x[1]))
Component:
 1: 0.841468071955942 ± 5.3955070531551656e-5 (prob.: 0.0)
Integrand evaluations: 1686
Fail:                  0
Number of subregions:  14

julia> cuhre((x, f) -> f[1] = cos(x[1]))
Component:
 1: 0.8414709848078966 ± 2.2204460420128823e-16 (prob.: 3.443539937576958e-5)
Integrand evaluations: 195
Fail:                  0
Number of subregions:  2





In section Examples you can find more complete examples.  Note that x
and f are both arrays with type Float64, so Cuba.jl can be used to
integrate real-valued functions of real arguments. See how to work with a
complex integrand.

Note: if you used Cuba.jl until version 0.0.4, be aware that the
user interface has been reworked in version 0.0.5 in a backward
incompatible way.




Optional Keywords

All other arguments required by Cuba integrator routines can be passed
as optional keywords. Cuba.jl uses some reasonable default values in
order to enable users to invoke integrator functions with a minimal set
of arguments. Anyway, if you want to make sure future changes to some
default values of keywords will not affect your current script,
explicitely specify the value of the keywords.


Common Keywords

These are optional keywords common to all functions:


	nvec (type: Integer, default: 1): the maximum number of points to be
given to the integrand routine in each invocation. Usually this is 1 but if
the integrand can profit from e.g. Single Instruction Multiple Data (SIMD)
vectorization, a larger value can be chosen. See Vectorization
section.


	rtol (type: Real, default: 1e-4), and atol (type: Real,
default: 1e-12): the requested relative
(\varepsilon_{\text{rel}}) and absolute
(\varepsilon_{\text{abs}}) accuracies. The integrator tries to
find an estimate \hat{I} for the integral I which for every
component c fulfills |\hat{I}_c - I_c|\leq \max(\varepsilon_{\text{abs}}, \varepsilon_{\text{rel}} |I_c|).


	flags (type: Integer, default: 0): flags governing the
integration:


	Bits 0 and 1 are taken as the verbosity level, i.e. 0 to 3,
unless the CUBAVERBOSE environment variable contains an even
higher value (used for debugging).

Level 0 does not print any output, level 1 prints “reasonable”
information on the progress of the integration, level 2 also echoes
the input parameters, and level 3 further prints the subregion results
(if applicable).



	Bit 2 = 0: all sets of samples collected on a subregion during
the various iterations or phases contribute to the final result.

Bit 2 = 1, only the last (largest) set of samples is used in
the final result.



	(Vegas and Suave only)

Bit 3 = 0, apply additional smoothing to the importance
function, this moderately improves convergence for many
integrands.

Bit 3 = 1, use the importance function without smoothing, this
should be chosen if the integrand has sharp edges.



	Bit 4 = 0, delete the state file (if one is chosen) when the
integration terminates successfully.

Bit 4 = 1, retain the state file.



	(Vegas only)

Bit 5 = 0, take the integrator’s state from the state file,
if one is present.

Bit 5 = 1, reset the integrator’s state even if a state file
is present, i.e. keep only the grid. Together with Bit 4 this
allows a grid adapted by one integration to be used for another
integrand.



	Bits 8–31 =: level determines the random-number generator.




To select e.g. last samples only and verbosity level 2, pass
6 = 4 + 2 for the flags.



	seed (type: Integer, default: 0): the seed for the
pseudo-random-number generator. This keyword is not available for
cuhre. The random-number generator is chosen as
follows:

| seed   | level (bits 8–31 of flags) | Generator                        |
|———-|———————————|———————————-|
| zero     | N/A                             | Sobol (quasi-random)             |
| non-zero | zero                            | Mersenne Twister (pseudo-random) |
| non-zero | non-zero                        | Ranlux (pseudo-random)           |

Ranlux implements Marsaglia and Zaman’s 24-bit RCARRY algorithm
with generation period p, i.e. for every 24 generated numbers
used, another p - 24 are skipped. The luxury level is encoded in
level as follows:


	Level 1 (p = 48): very long period, passes the gap test but
fails spectral test.


	Level 2 (p = 97): passes all known tests, but theoretically
still defective.


	Level 3 (p = 223): any theoretically possible correlations
have very small chance of being observed.


	Level 4 (p = 389): highest possible luxury, all 24 bits
chaotic.




Levels 5–23 default to 3, values above 24 directly specify the
period p. Note that Ranlux’s original level 0, (mis)used for
selecting Mersenne Twister in Cuba, is equivalent to level = 24.



	minevals (type: Real, default: 0): the minimum number of
integrand evaluations required


	maxevals (type: Real, default: 1000000): the (approximate)
maximum number of integrand evaluations allowed


	statefile (type: AbstractString, default: ""): a filename for
storing the internal state. To not store the internal state, put
"" (empty string, this is the default) or C_NULL (C null
pointer).

Cuba can store its entire internal state (i.e. all the information
to resume an interrupted integration) in an external file. The state
file is updated after every iteration. If, on a subsequent
invocation, a Cuba routine finds a file of the specified name, it
loads the internal state and continues from the point it left off.
Needless to say, using an existing state file with a different
integrand generally leads to wrong results.

This feature is useful mainly to define “check-points” in
long-running integrations from which the calculation can be
restarted.

Once the integration reaches the prescribed accuracy, the state file
is removed, unless bit 4 of flags (see above) explicitly requests
that it be kept.



	spin (type: Ptr{Void}, default: C_NULL): this is the
placeholder for the “spinning cores” pointer. Cuba.jl does not
support parallelization, so this keyword should not have a value
different from C_NULL.







Vegas-Specific Keywords

These optional keywords can be passed only to vegas:


	nstart (type: Integer, default: 1000): the number of integrand
evaluations per iteration to start with


	nincrease (type: Integer, default: 500): the increase in the
number of integrand evaluations per iteration


	nbatch (type: Integer, default: 1000): the batch size for
sampling

Vegas samples points not all at once, but in batches of size
nbatch, to avoid excessive memory consumption. 1000 is a
reasonable value, though it should not affect performance too much



	gridno (type: Integer, default: 0): the slot in the internal
grid table.

It may accelerate convergence to keep the grid accumulated during
one integration for the next one, if the integrands are reasonably
similar to each other. Vegas maintains an internal table with space
for ten grids for this purpose. The slot in this grid is specified
by gridno.

If a grid number between 1 and 10 is selected, the grid is not
discarded at the end of the integration, but stored in the
respective slot of the table for a future invocation. The grid is
only re-used if the dimension of the subsequent integration is the
same as the one it originates from.

In repeated invocations it may become necessary to flush a slot in
memory, in which case the negative of the grid number should be set.








Suave-Specific Keywords

These optional keywords can be passed only to suave:


	nnew (type: Integer, default: 1000): the number of new
integrand evaluations in each subdivision


	nmin (type: Integer, default: 2): the minimum number of
samples a former pass must contribute to a subregion to be
considered in that region’s compound integral value. Increasing
nmin may reduce jumps in the \chi^2 value


	flatness (type: Real, default: .25): the type of norm used to
compute the fluctuation of a sample. This determines how prominently
“outliers”, i.e. individual samples with a large fluctuation,
figure in the total fluctuation, which in turn determines how a
region is split up. As suggested by its name, flatness should be
chosen large for “flat” integrands and small for “volatile”
integrands with high peaks. Note that since flatness appears in
the exponent, one should not use too large values (say, no more than
a few hundred) lest terms be truncated internally to prevent
overflow.







Divonne-Specific Keywords

These optional keywords can be passed only to divonne:


	key1 (type: Integer, default: 47): determines sampling in the
partitioning phase: key1 = 7, 9, 11, 13 selects the cubature
rule of degree key1. Note that the degree-11 rule is available
only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values of key1, a quasi-random sample of n_1 = |\verb|key1|| points is used, where the sign of key1 determines
the type of sample,


	key1 > 0, use a Korobov quasi-random sample,


	key1 < 0, use a “standard” sample (a Sobol quasi-random
sample if seed = 0, otherwise a pseudo-random sample).


	key2 (type: Integer, default: 1): determines sampling in
the final integration phase:

key2 = 7, 9, 11, 13 selects the cubature rule of degree
key2. Note that the degree-11 rule is available only in 3
dimensions, the degree-13 rule only in 2 dimensions.

For other values of key2, a quasi-random sample is used, where
the sign of key2 determines the type of sample,


	key2 > 0, use a Korobov quasi-random sample,


	key2 < 0, use a “standard” sample (see description of
key1 above),




and n_2 = |\verb|key2|| determines the number of points,


	n_2\geq 40, sample n_2 points,


	n_2 < 40, sample n_2\,n_{\text{need}} points, where
n_{\text{need}} is the number of points needed to reach
the prescribed accuracy, as estimated by Divonne from the
results of the partitioning phase










	key3 (type: Integer, default: 1): sets the strategy for the
refinement phase:

key3 = 0, do not treat the subregion any further.

key3 = 1, split the subregion up once more.

Otherwise, the subregion is sampled a third time with key3
specifying the sampling parameters exactly as key2 above.



	maxpass (type: Integer, default: 5): controls the thoroughness
of the partitioning phase: The partitioning phase terminates when
the estimated total number of integrand evaluations (partitioning
plus final integration) does not decrease for maxpass successive
iterations.

A decrease in points generally indicates that Divonne discovered new
structures of the integrand and was able to find a more effective
partitioning. maxpass can be understood as the number of
“safety” iterations that are performed before the partition is
accepted as final and counting consequently restarts at zero
whenever new structures are found.



	border (type: Real, default: 0.): the width of the border of
the integration region. Points falling into this border region will
not be sampled directly, but will be extrapolated from two samples
from the interior. Use a non-zero border if the integrand function
cannot produce values directly on the integration boundary


	maxchisq (type: Real, default: 10.): the \chi^2 value a
single subregion is allowed to have in the final integration phase.
Regions which fail this \chi^2 test and whose sample averages
differ by more than mindeviation move on to the refinement phase.


	mindeviation (type: Real, default: 0.25): a bound, given as
the fraction of the requested error of the entire integral, which
determines whether it is worthwhile further examining a region that
failed the \chi^2 test. Only if the two sampling averages obtained
for the region differ by more than this bound is the region further
treated.


	ngiven (type: Integer, default: 0): the number of points in
the xgiven array


	ldxgiven (type: Integer, default: 0): the leading dimension of
xgiven, i.e. the offset between one point and the next in memory


	xgiven (type: AbstractArray{Real}, default:
zeros(Cdouble, ldxgiven, ngiven)): a list of points where the
integrand might have peaks. Divonne will consider these points when
partitioning the integration region. The idea here is to help the
integrator find the extrema of the integrand in the presence of very
narrow peaks. Even if only the approximate location of such peaks is
known, this can considerably speed up convergence.


	nextra (type: Integer, default: 0): the maximum number of
extra points the peak-finder subroutine will return. If nextra is
zero, peakfinder is not called and an arbitrary object may be
passed in its place, e.g. just 0


	peakfinder (type: Ptr{Void}, default: C_NULL): the peak-finder
subroutine







Cuhre-Specific Keyword

This optional keyword can be passed only to cuhre:


	key (type: Integer, default: 0): chooses the basic integration
rule:

key = 7, 9, 11, 13 selects the cubature rule of degree key.
Note that the degree-11 rule is available only in 3 dimensions, the
degree-13 rule only in 2 dimensions.

For other values, the default rule is taken, which is the degree-13
rule in 2 dimensions, the degree-11 rule in 3 dimensions, and the
degree-9 rule otherwise.










Output

The integrating functions vegas, suave, divonne,
and cuhre return an Integral object whose fields are

integral :: Vector{Float64}
error    :: Vector{Float64}
probl    :: Vector{Float64}
neval    :: Int64
fail     :: Int32
nregions :: Int32





The first three fields are arrays with length ncomp, the last three
ones are scalars. The Integral object can also be iterated over like a
tuple. In particular, if you assign the output of integrator functions
to the variable named result, you can access the value of the i-th
component of the integral with result[1][i] or result.integral[i]
and the associated error with result[2][i] or result.error[i].


	integral (type: Vector{Float64}, with ncomp components): the
integral of integrand over the unit hypercube


	error (type: Vector{Float64}, with ncomp components): the
presumed absolute error for each component of integral


	probability (type: Vector{Float64}, with ncomp components):
the \chi^2 -probability (not the \chi^2 -value itself!) that
error is not a reliable estimate of the true integration error. To
judge the reliability of the result expressed through prob,
remember that it is the null hypothesis that is tested by the
\chi^2 test, which is that error is a reliable estimate. In
statistics, the null hypothesis may be rejected only if prob is
fairly close to unity, say prob >.95


	neval (type: Int64): the actual number of integrand evaluations
needed


	fail (type: Int32): an error flag:


	fail = 0, the desired accuracy was reached


	fail = -1, dimension out of range


	fail > 0, the accuracy goal was not met within the allowed
maximum number of integrand evaluations. While Vegas, Suave, and
Cuhre simply return 1, Divonne can estimate the number of
points by which maxevals needs to be increased to reach the
desired accuracy and returns this value.






	nregions (type: Int32): the actual number of subregions needed
(always 0 in vegas)









Vectorization

Vectorization means evaluating the integrand function for several points
at once. This is also known as Single Instruction Multiple
Data [https://en.wikipedia.org/wiki/SIMD] (SIMD) paradigm and is
different from ordinary parallelization where independent threads are
executed concurrently. It is usually possible to employ vectorization on
top of parallelization.

Cuba.jl cannot automatically vectorize the integrand function, of course, but
it does pass (up to) nvec points per integrand call (Common Keywords).
This value need not correspond to the hardware vector length –computing several
points in one call can also make sense e.g. if the computations have significant
intermediate results in common.

When nvec > 1, the input x is a matrix of dimensions (ndim, nvec), while
the output f is a matrix with dimensions (ncomp, nvec). Vectorization can be
used to evaluate more quickly the integrand function, for example by exploiting
parallelism, thus speeding up computation of the integral. See the section
Vectorized Function below for an example of a vectorized funcion.

!!! note “Disambiguation”

The `nbatch` argument of [`vegas`](@ref) is related in purpose but
not identical to `nvec`. It internally partitions the sampling done by
Vegas but has no bearing on the number of points given to the integrand.
On the other hand, it it pointless to choose `nvec` > `nbatch` for
Vegas.








Examples


One dimensional integral

The integrand of

\int_{0}^{1} \frac{\log(x)}{\sqrt{x}} \,\mathrm{d}x





has an algebraic-logarithmic divergence for x = 0, but the integral is
convergent and its value is -4. Cuba.jl integrator routines can
handle this class of functions and you can easily compute the numerical
approximation of this integral using one of the following commands:

julia> vegas( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
Component:
 1: -3.9981623937128465 ± 0.00044066437168409464 (prob.: 0.2843052968819913)
Integrand evaluations: 1007500
Fail:                  1
Number of subregions:  0

julia> suave( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
Component:
 1: -3.999976286717141 ± 0.00039504866661339003 (prob.: 1.0)
Integrand evaluations: 51000
Fail:                  0
Number of subregions:  51

julia> divonne( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
Component:
 1: -3.9997602130594365 ± 0.000356787481490126 (prob.: 1.0)
Integrand evaluations: 11593
Fail:                  0
Number of subregions:  76

julia> cuhre( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
Component:
 1: -4.000000355067187 ± 0.0003395484028626406 (prob.: 0.0)
Integrand evaluations: 5915
Fail:                  0
Number of subregions:  46








Vector-valued integrand

Consider the integral

\int\limits_{\Omega}
\boldsymbol{f}(x,y,z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z





where \Omega = [0, 1]^{3} and

\boldsymbol{f}(x,y,z) = \left(\sin(x)\cos(y)\exp(z), \,\exp(-(x^2 + y^2 +
z^2)), \,\frac{1}{1 - xyz}\right)





In this case it is more convenient to write a simple Julia script to
compute the above integral

julia> using Cuba, SpecialFunctions

julia> function integrand(x, f)
           f[1] = sin(x[1])*cos(x[2])*exp(x[3])
           f[2] = exp(-(x[1]^2 + x[2]^2 + x[3]^2))
           f[3] = 1/(1 - prod(x))
       end
integrand (generic function with 1 method)

julia> result, err = cuhre(integrand, 3, 3, atol=1e-12, rtol=1e-10);

julia> answer = ((ℯ-1)*(1-cos(1))*sin(1), (sqrt(pi)*erf(1)/2)^3, zeta(3));

julia> for i = 1:3
           println("Component ", i)
           println(" Result of Cuba: ", result[i], " ± ", err[i])
           println(" Exact result:   ", answer[i])
           println(" Actual error:   ", abs(result[i] - answer[i]))
       end
Component 1
 Result of Cuba: 0.6646696797813745 ± 1.0056262721114345e-13
 Exact result:   0.6646696797813771
 Actual error:   2.6645352591003757e-15
Component 2
 Result of Cuba: 0.41653838588064585 ± 2.932867102879894e-11
 Exact result:   0.41653838588663805
 Actual error:   5.992206730809357e-12
Component 3
 Result of Cuba: 1.2020569031649704 ± 1.1958521782293645e-10
 Exact result:   1.2020569031595951
 Actual error:   5.375255796025158e-12








Integral with non-constant boundaries

The integral

\int_{-y}^{y}\int_{0}^{z}\int_{0}^{\pi}
\cos(x)\sin(y)\exp(z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z





has non-constant boundaries. By applying the substitution rule
repeatedly, you can scale the integrand function and get this equivalent
integral over the fixed domain \Omega = [0, 1]^{3}

\int\limits_{\Omega} 2\pi^{3}yz^2 \cos(\pi yz(2x - 1)) \sin(\pi yz)
\exp(\pi z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z





that can be computed with Cuba.jl using the following Julia script

julia> using Cuba

julia> function integrand(x, f)
           f[1] = 2pi^3*x[2]*x[3]^2*cos(pi*x[2]*x[3]*(2*x[1] - 1.0))*
                  sin(pi*x[2]*x[3])*exp(pi*x[3])
       end
integrand (generic function with 1 method)

julia> result, err = cuhre(integrand, 3, 1, atol=1e-12, rtol=1e-10);

julia> answer = pi*ℯ^pi - (4ℯ^pi - 4)/5;

julia> begin
               println("Result of Cuba: ", result[1], " ± ", err[1])
               println("Exact result:   ", answer)
               println("Actual error:   ", abs(result[1] - answer))
       end
Result of Cuba: 54.98607586826155 ± 5.4606062189698135e-9
Exact result:   54.98607586789537
Actual error:   3.6617819887396763e-10








Integrals over Infinite Domains

Cuba.jl assumes always as integration domain the hypercube [0, 1]^n, but
we have seen that using integration by substitution we can calculate integrals
over different domains as well. In the Introduction we also proposed two
useful substitutions that can be employed to change an infinite or semi-infinite
domain into a finite one.

As a first example, consider the following integral with a semi-infinite
domain:

\int_{0}^{\infty}\frac{\log(1 + x^2)}{1 + x^2}\,\mathrm{d}x





whose exact result is \pi\log 2. This can be computed as follows:

julia> using Cuba

julia> # The function we want to integrate over [0, ∞).

julia> func(x) = log(1 + x^2)/(1 + x^2)
func (generic function with 1 method)

julia> # Scale the function in order to integrate over [0, 1].

julia> function integrand(x, f)
           f[1] = func(x[1]/(1 - x[1]))/(1 - x[1])^2
       end
integrand (generic function with 1 method)

julia> result, err = cuhre(integrand, atol = 1e-12, rtol = 1e-10);

julia> answer = pi*log(2);

julia> begin
               println("Result of Cuba: ", result[1], " ± ", err[1])
               println("Exact result:   ", answer)
               println("Actual error:   ", abs(result[1] - answer))
       end
Result of Cuba: 2.1775860903056885 ± 2.150398850102772e-10
Exact result:   2.177586090303602
Actual error:   2.086331107875594e-12





Now we want to calculate this integral, over an infinite domain

\int_{-\infty}^{\infty} \frac{1 - \cos x}{x^2}\,\mathrm{d}x





which gives \pi. You can calculate the result with the code below.
Note that integrand function has value 1/2 for x=0, but you have to
inform Julia about this.

julia> using Cuba

julia> # The function we want to integrate over (-∞, ∞).

julia> func(x) = x==0 ? 0.5*one(x) : (1 - cos(x))/x^2
func (generic function with 1 method)

julia> # Scale the function in order to integrate over [0, 1].

julia> function integrand(x, f)
           f[1] = func((2*x[1] - 1)/x[1]/(1 - x[1])) *
                   (2*x[1]^2 - 2*x[1] + 1)/x[1]^2/(1 - x[1])^2
       end
integrand (generic function with 1 method)

julia> result, err = cuhre(integrand, atol = 1e-7, rtol = 1e-7);

julia> answer = float(pi);

julia> begin
               println("Result of Cuba: ", result[1], " ± ", err[1])
               println("Exact result:   ", answer)
               println("Actual error:   ", abs(result[1] - answer))
       end
Result of Cuba: 3.1415928900555046 ± 2.050669142074607e-6
Exact result:   3.141592653589793
Actual error:   2.3646571145619077e-7








Complex integrand

As already explained, Cuba.jl operates on real quantities, so if you want to
integrate a complex-valued function of complex arguments you have to treat
complex quantities as 2-component arrays of real numbers.  For example, if you
do not remember Euler’s
formula [https://en.wikipedia.org/wiki/Euler%27s_formula], you can compute this
simple integral

\int_{0}^{\pi/2} \exp(\mathrm{i} x)\,\mathrm{d}x





with the following code

julia> using Cuba

julia> function integrand(x, f)
           # Complex integrand, scaled to integrate in [0, 1].
           tmp = cis(x[1]*pi/2)*pi/2
           # Assign to two components of "f" the real
           # and imaginary part of the integrand.
           f[1], f[2] = reim(tmp)
       end
integrand (generic function with 1 method)

julia> result = cuhre(integrand, 2, 2);

julia> begin
           println("Result of Cuba: ", complex(result[1]...))
           println("Exact result:   ", complex(1.0, 1.0))
       end
Result of Cuba: 1.0 + 1.0im
Exact result:   1.0 + 1.0im








Passing data to the integrand function

Cuba Library allows program written in C and Fortran to pass extra data
to the integrand function with userdata argument. This is useful, for
example, when the integrand function depends on changing parameters. In
Cuba.jl the userdata argument is not available, but you do not
normally need it.

For example, the cumulative distribution
function [https://en.wikipedia.org/wiki/Cumulative_distribution_function]
F(x;k) of chi-squared
distribution [https://en.wikipedia.org/wiki/Chi-squared_distribution] is
defined by

F(x; k) = \int_{0}^{x} \frac{t^{k/2 - 1}\exp(-t/2)}{2^{k/2}\Gamma(k/2)}
\,\mathrm{d}t





The cumulative distribution function depends on parameter k, but the
function passed as integrand to Cuba.jl integrator routines accepts as
arguments only the input and output vectors. However you can easily
define a function to calculate a numerical approximation of F(x; k)
based on the above integral expression because the integrand can access
any variable visible in its
scope [http://docs.julialang.org/en/stable/manual/variables-and-scoping/].
The following Julia script computes F(x = \pi; k) for different k
and compares the result with more precise values, based on the analytic
expression of the cumulative distribution function, provided by
GSL.jl [https://github.com/jiahao/GSL.jl] package.

julia> using Cuba, GSL, Printf, SpecialFunctions

julia> function chi2cdf(x::Real, k::Real)
           k2 = k/2
           # Chi-squared probability density function, without constant denominator.
           # The result of integration will be divided by that factor.
           function chi2pdf(t::Float64)
               # "k2" is taken from the outside.
               return t^(k2 - 1.0)*exp(-t/2)
           end
           # Neither "x" is passed directly to the integrand function,
           # but is visible to it.  "x" is used to scale the function
           # in order to actually integrate in [0, 1].
           x*cuhre((t,f) -> f[1] = chi2pdf(t[1]*x))[1][1]/(2^k2*gamma(k2))
       end
chi2cdf (generic function with 1 method)

julia> x = float(pi);

julia> begin
            @printf("Result of Cuba: %.6f %.6f %.6f %.6f %.6f\n",
                    map((k) -> chi2cdf(x, k), collect(1:5))...)
            @printf("Exact result:   %.6f %.6f %.6f %.6f %.6f\n",
                    map((k) -> cdf_chisq_P(x, k), collect(1:5))...)
        end
Result of Cuba: 0.923681 0.792120 0.629694 0.465584 0.321833
Exact result:   0.923681 0.792120 0.629695 0.465584 0.321833








Vectorized Function

Consider the integral

\int\limits_{\Omega} \prod_{i=1}^{10} \cos(x_{i})
\,\mathrm{d}\boldsymbol{x} = \sin(1)^{10} = 0.1779883\dots





where \Omega = [0, 1]^{10} and \boldsymbol{x} = (x_{1}, \dots, x_{10}) is a 10-dimensional vector. A simple way to compute this
integral is the following:

julia> using Cuba, BenchmarkTools

julia> cuhre((x, f) -> f[] = prod(cos.(x)), 10)
Component:
 1: 0.1779870665870775 ± 1.0707995959536173e-6 (prob.: 0.2438374075714901)
Integrand evaluations: 7815
Fail:                  0
Number of subregions:  2

julia> @benchmark cuhre((x, f) -> f[] = prod(cos.(x)), 10)
BenchmarkTools.Trial:
  memory estimate:  2.62 MiB
  allocs estimate:  39082
  --------------
  minimum time:     1.633 ms (0.00% GC)
  median time:      1.692 ms (0.00% GC)
  mean time:        1.867 ms (8.62% GC)
  maximum time:     3.660 ms (45.54% GC)
  --------------
  samples:          2674
  evals/sample:     1





We can use vectorization in order to speed up evaluation of the
integrand function.

julia> function fun_vec(x,f)
           f[1,:] .= 1.0
           for j in 1:size(x,2)
               for i in 1:size(x, 1)
                   f[1, j] *= cos(x[i, j])
               end
           end
       end
fun_vec (generic function with 1 method)

julia> cuhre(fun_vec, 10, nvec = 1000)
Component:
 1: 0.1779870665870775 ± 1.0707995959536173e-6 (prob.: 0.2438374075714901)
Integrand evaluations: 7815
Fail:                  0
Number of subregions:  2

julia> @benchmark cuhre(fun_vec, 10, nvec = 1000)
BenchmarkTools.Trial:
  memory estimate:  2.88 KiB
  allocs estimate:  54
  --------------
  minimum time:     949.976 μs (0.00% GC)
  median time:      954.039 μs (0.00% GC)
  mean time:        966.930 μs (0.00% GC)
  maximum time:     1.204 ms (0.00% GC)
  --------------
  samples:          5160
  evals/sample:     1





A further speed up can be gained by running the for loop in parallel
with Threads.@threads. For example, running Julia with 4 threads:

julia> function fun_par(x,f)
           f[1,:] .= 1.0
           Threads.@threads for j in 1:size(x,2)
               for i in 1:size(x, 1)
                   f[1, j] *= cos(x[i, j])
               end
           end
       end
fun_par (generic function with 1 method)

julia> cuhre(fun_par, 10, nvec = 1000)
Component:
 1: 0.1779870665870775 ± 1.0707995959536173e-6 (prob.: 0.2438374075714901)
Integrand evaluations: 7815
Fail:                  0
Number of subregions:  2

julia> @benchmark cuhre(fun_par, 10, nvec = 1000)
BenchmarkTools.Trial:
  memory estimate:  3.30 KiB
  allocs estimate:  63
  --------------
  minimum time:     507.914 μs (0.00% GC)
  median time:      515.182 μs (0.00% GC)
  mean time:        520.667 μs (0.06% GC)
  maximum time:     3.801 ms (85.06% GC)
  --------------
  samples:          9565
  evals/sample:     1










Performance

Cuba.jl cannot (yet? [https://github.com/giordano/Cuba.jl/issues/1])
take advantage of parallelization capabilities of Cuba Library.
Nonetheless, it has performances comparable with equivalent native C or
Fortran codes based on Cuba library when CUBACORES environment
variable is set to 0 (i.e., multithreading is disabled). The following
is the result of running the benchmark present in test directory on a
64-bit GNU/Linux system running Julia 0.7.0-beta2.3 (commit 83ce9c7524)
equipped with an Intel(R) Core(TM) i7-4700MQ CPU. The C and FORTRAN 77
benchmark codes have been compiled with GCC 7.3.0.

$ CUBACORES=0 julia -e 'using Pkg; cd(Pkg.dir("Cuba")); include("test/benchmark.jl")'
[ Info: Performance of Cuba.jl:
  0.257360 seconds (Vegas)
  0.682703 seconds (Suave)
  0.329552 seconds (Divonne)
  0.233190 seconds (Cuhre)
[ Info: Performance of Cuba Library in C:
  0.268249 seconds (Vegas)
  0.682682 seconds (Suave)
  0.319553 seconds (Divonne)
  0.234099 seconds (Cuhre)
[ Info: Performance of Cuba Library in Fortran:
  0.233532 seconds (Vegas)
  0.669809 seconds (Suave)
  0.284515 seconds (Divonne)
  0.195740 seconds (Cuhre)





Of course, native C and Fortran codes making use of Cuba Library
outperform Cuba.jl when higher values of CUBACORES are used, for
example:

$ CUBACORES=1 julia -e 'using Pkg; cd(Pkg.dir("Cuba")); include("test/benchmark.jl")'
[ Info: Performance of Cuba.jl:
  0.260080 seconds (Vegas)
  0.677036 seconds (Suave)
  0.342396 seconds (Divonne)
  0.233280 seconds (Cuhre)
[ Info: Performance of Cuba Library in C:
  0.096388 seconds (Vegas)
  0.574647 seconds (Suave)
  0.150003 seconds (Divonne)
  0.102817 seconds (Cuhre)
[ Info: Performance of Cuba Library in Fortran:
  0.094413 seconds (Vegas)
  0.556084 seconds (Suave)
  0.139606 seconds (Divonne)
  0.107335 seconds (Cuhre)





Cuba.jl internally fixes CUBACORES to 0 in order to prevent from
forking julia processes that would only slow down calculations eating
up the memory, without actually taking advantage of concurrency.
Furthemore, without this measure, adding more Julia processes with
addprocs() would only make the program segfault.




Related projects

There are other Julia packages for multidimenensional numerical integration:


	Cubature.jl [https://github.com/stevengj/Cubature.jl]


	HCubature.jl [https://github.com/stevengj/HCubature.jl]


	NIntegration.jl [https://github.com/pabloferz/NIntegration.jl]







Development

Cuba.jl is developed on GitHub: https://github.com/giordano/Cuba.jl.
Feel free to report bugs and make suggestions at
https://github.com/giordano/Cuba.jl/issues.


History

The ChangeLog of the package is available in
NEWS.md [https://github.com/giordano/Cuba.jl/blob/master/NEWS.md] file
in top directory. There have been some breaking changes from time to
time, beware of them when upgrading the package.






License

The Cuba.jl package is licensed under the GNU Lesser General Public
License, the same as Cuba library [http://www.feynarts.de/cuba/]. The
original author is Mosè Giordano.




Credits

If you use this library for your work, please credit Thomas Hahn.
Citable papers about Cuba Library:


	Hahn, T. 2005, Computer Physics Communications, 168, 78.
DOI:10.1016/j.cpc.2005.01.010 [http://dx.doi.org/10.1016/j.cpc.2005.01.010].
arXiv:hep-ph/0404043 [http://arxiv.org/abs/hep-ph/0404043].
Bibcode:2005CoPhC.168…78H [http://adsabs.harvard.edu/abs/2005CoPhC.168...78H].


	Hahn, T. 2015, Journal of Physics Conference Series, 608, 012066.
DOI:10.1088/1742-6596/608/1/012066 [http://dx.doi.org/10.1088/1742-6596/608/1/012066].
arXiv:1408.6373 [http://arxiv.org/abs/1408.6373].
Bibcode:2015JPhCS.608a2066H [http://adsabs.harvard.edu/abs/2015JPhCS.608a2066H].
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