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CHAPTER 1

Introduction

Cuba.jl is a Julia library for multidimensional numerical integration of real-valued functions of real arguments,
using different algorithms.

This is just a Julia wrapper around the C Cuba library, version 4.2, by Thomas Hahn. All the credits goes to him for
the underlying functions, blame me for any problem with the Julia interface.

All algorithms provided by Cuba library are supported in Cuba.jl:

Algorithm Basic integration
method

Type Variance reduction

Vegas
Sobol quasi-random sam-
ple

Monte Carlo
importance sampling

or Mersenne Twister
pseudo-random sample

Monte Carlo

or Ranlux pseudo-random
sample

Monte Carlo

Suave
Sobol quasi-random sam-
ple

Monte Carlo globally adaptive subdivision

and importance samplingor Mersenne Twister
pseudo-random sample

Monte Carlo

or Ranlux pseudo-random
sample

Monte Carlo

Divonne

Korobov quasi-random
sample

Monte Carlo stratified sampling

aided by methods from

numerical optimization

or Sobol quasi-random
sample

Monte Carlo

or Mersenne Twister
pseudo-random sample

Monte Carlo

or Ranlux pseudo-random
sample

Monte Carlo

or cubature rules deterministic
Cuhre cubature rules deterministic globally adaptive subdivi-

sion
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For more details on the algorithms see the manual included in Cuba library and available in deps/cuba-julia/
cuba.pdf after successful installation of Cuba.jl.

Integration is always performed on the 𝑛-dimensional unit hypercube [0, 1]𝑛.

Tip: If you want to compute an integral over a different set, you have to scale the integrand function in order to have
an equivalent integral on [0, 1]𝑛 using substitution rules. For example, recall that in one dimension∫︁ 𝑏

𝑎

𝑓(𝑥) d𝑥 =

∫︁ 1

0

𝑓(𝑎 + (𝑏− 𝑎)𝑦)(𝑏− 𝑎) d𝑦

where the final (𝑏− 𝑎) is the one-dimensional version of the Jacobian.

Integration over a semi-infinite or an inifite domain is a bit trickier, but you can follow this advice from Steven G.
Johnson: to compute an integral over a semi-infinite interval, you can perform the change of variables 𝑥 = 𝑎+ 𝑦/(1−
𝑦): ∫︁ ∞

𝑎

𝑓(𝑥) d𝑥 =

∫︁ 1

0

𝑓

(︂
𝑎 +

𝑦

1 − 𝑦

)︂
1

(1 − 𝑦)2
d𝑦

For an infinite interval, you can perform the change of variables 𝑥 = (2𝑦 − 1)/((1 − 𝑦)𝑦):∫︁ ∞

−∞
𝑓(𝑥) d𝑥 =

∫︁ 1

0

𝑓

(︂
2𝑦 − 1

(1 − 𝑦)𝑦

)︂
2𝑦2 − 2𝑦 + 1

(1 − 𝑦)2𝑦2
d𝑦

In addition, recall that for an even function
∫︀∞
−∞ 𝑓(𝑥) d𝑥 = 2

∫︀∞
0

𝑓(𝑥) d𝑥, while the integral of an odd function over
the infinite interval (−∞,∞) is zero.

All this generalizes straightforwardly to more than one dimension. In Examples section you can find the computation
of a 3-dimensional integral with non-constant boundaries using Cuba.jl and two integrals over infinite domains.

Cuba.jl is available for GNU/Linux, Mac OS, and Windows (i686 and x86_64 architectures).
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CHAPTER 2

Installation

Cuba.jl is available for Julia 0.4 and later versions, and can be installed with Julia built-in package manager. In a
Julia session run the commands

julia> Pkg.update()
julia> Pkg.add("Cuba")

Installation script on GNU/Linux and Mac OS systems will download Cuba Library source code and build the Cuba
shared object. In order to accomplish this task a C compiler is needed. Instead, on Windows a prebuilt version of the
library is downloaded.

3
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CHAPTER 3

Usage

After installing the package, run

using Cuba

or put this command into your Julia script.

Cuba.jl provides four functions to integrate, one for each algorithm:

vegas(integrand, ndim=1, ncomp=1[; keywords...])

suave(integrand, ndim=1, ncomp=1[; keywords...])

divonne(integrand, ndim=1, ncomp=1[; keywords...])

cuhre(integrand, ndim=1, ncomp=1[; keywords...])

Large parts of the following sections are borrowed from Cuba manual. Refer to it for more information on the details.

Arguments

The only mandatory argument of integrator functions is:

• integrand (type: Function): the function to be integrated

Optional positional arguments are:

• ndim (type: Integer): the number of dimensions of the integratation domain. Defaults to 1 if omitted

• ncomp (type: Integer): the number of components of the integrand. Default to 1 if omitted

ndim and ncomp arguments must appear in this order, so you cannot omit ndim but not ncomp. integrand
should be a function integrand(x, f) taking two arguments:

• the input vector x of length ndim

• the output vector f of length ncomp, used to set the value of each component of the integrand at point x

5
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Also anonymous functions are allowed as integrand. For those familiar with Cubature.jl package, this is the
same syntax used for integrating vector-valued functions.

For example, the integral ∫︁ 1

0

cos(𝑥) d𝑥 = sin(1) = 0.8414709848078965

can be computed with one of the following lines

vegas((x,f)->f[1]=cos(x[1]))
# => 0.8414910005259609 ± 5.2708169787733e-5
suave((x,f)->f[1]=cos(x[1]))
# => 0.8411523690658836 ± 8.357995611133613e-5
divonne((x,f)->f[1]=cos(x[1]))
# => 0.841468071955942 ± 5.3955070531551656e-5
cuhre((x,f)->f[1]=cos(x[1]))
# => 0.8414709848078966 ± 2.2204460420128823e-16

In section Examples you can find more complete examples. Note that x and f are both arrays with type Float64, so
Cuba.jl can be used to integrate real-valued functions of real arguments. See how to work with a complex integrand.

Note: if you used Cuba.jl until version 0.4, be aware that the user interface has been reworked in version 0.5 in a
backward incompatible way.

Optional Keywords

All other arguments required by Cuba integrator routines can be passed as optional keywords. Cuba.jl uses some
reasonable default values in order to enable users to invoke integrator functions with a minimal set of arguments.
Anyway, if you want to make sure future changes to some default values of keywords will not affect your current
script, explicitely specify the value of the keywords.

Common Keywords

These are optional keywords common to all functions:

• nvec (type: Integer, default: 1): the maximum number of points to be given to the integrand routine in each
invocation. Usually this is 1 but if the integrand can profit from e.g. Single Instruction Multiple Data (SIMD)
vectorization, a larger value can be chosen. See Vectorization section.

• reltol (type: Real, default: 1e-4), and abstol (type: Real, default: 1e-12): the requested relative
(𝜀rel) and absolute (𝜀abs) accuracies. The integrator tries to find an estimate 𝐼 for the integral 𝐼 which for every
component 𝑐 fulfills |𝐼𝑐 − 𝐼𝑐| ≤ max(𝜀abs, 𝜀rel|𝐼𝑐|).

• flags (type: Integer, default: 0): flags governing the integration:

– Bits 0 and 1 are taken as the verbosity level, i.e. 0 to 3, unless the CUBAVERBOSE environment variable
contains an even higher value (used for debugging).

Level 0 does not print any output, level 1 prints “reasonable” information on the progress of the integration,
level 2 also echoes the input parameters, and level 3 further prints the subregion results (if applicable).

– Bit 2 = 0: all sets of samples collected on a subregion during the various iterations or phases contribute to
the final result.

Bit 2 = 1, only the last (largest) set of samples is used in the final result.

6 Chapter 3. Usage
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– (Vegas and Suave only)

Bit 3 = 0, apply additional smoothing to the importance function, this moderately improves convergence
for many integrands.

Bit 3 = 1, use the importance function without smoothing, this should be chosen if the integrand has sharp
edges.

– Bit 4 = 0, delete the state file (if one is chosen) when the integration terminates successfully.

Bit 4 = 1, retain the state file.

– (Vegas only)

Bit 5 = 0, take the integrator’s state from the state file, if one is present.

Bit 5 = 1, reset the integrator’s state even if a state file is present, i.e. keep only the grid. Together with Bit
4 this allows a grid adapted by one integration to be used for another integrand.

– Bits 8–31 =: level determines the random-number generator.

To select e.g. last samples only and verbosity level 2, pass 6 = 4 + 2 for the flags.

• seed (type: Integer, default: 0): the seed for the pseudo-random-number generator. This keyword is not
available for cuhre(). The random-number generator is chosen as follows:

seed level (bits 8–31 of flags) Generator
zero N/A Sobol (quasi-random)
non-zero zero Mersenne Twister (pseudo-random)
non-zero non-zero Ranlux (pseudo-random)

Ranlux implements Marsaglia and Zaman’s 24-bit RCARRY algorithm with generation period 𝑝, i.e. for every
24 generated numbers used, another 𝑝− 24 are skipped. The luxury level is encoded in level as follows:

– Level 1 (𝑝 = 48): very long period, passes the gap test but fails spectral test.

– Level 2 (𝑝 = 97): passes all known tests, but theoretically still defective.

– Level 3 (𝑝 = 223): any theoretically possible correlations have very small chance of being observed.

– Level 4 (𝑝 = 389): highest possible luxury, all 24 bits chaotic.

Levels 5–23 default to 3, values above 24 directly specify the period 𝑝. Note that Ranlux’s original level 0,
(mis)used for selecting Mersenne Twister in Cuba, is equivalent to level = 24.

• minevals (type: Real, default: 0): the minimum number of integrand evaluations required

• maxevals (type: Real, default: 1000000): the (approximate) maximum number of integrand evaluations
allowed

• statefile (type: AbstractString, default: ""): a filename for storing the internal state. To not store
the internal state, put "" (empty string, this is the default) or C_NULL (C null pointer).

Cuba can store its entire internal state (i.e. all the information to resume an interrupted integration) in an external
file. The state file is updated after every iteration. If, on a subsequent invocation, a Cuba routine finds a file of
the specified name, it loads the internal state and continues from the point it left off. Needless to say, using an
existing state file with a different integrand generally leads to wrong results.

This feature is useful mainly to define “check-points” in long-running integrations from which the calculation
can be restarted.

Once the integration reaches the prescribed accuracy, the state file is removed, unless bit 4 of flags (see above)
explicitly requests that it be kept.

• spin (type: Ptr{Void}, default: C_NULL): this is the placeholder for the “spinning cores” pointer. Cuba.
jl does not support parallelization, so this keyword should not have a value different from C_NULL.

3.2. Optional Keywords 7
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Vegas-Specific Keywords

These optional keywords can be passed only to vegas():

• nstart (type: Integer, default: 1000): the number of integrand evaluations per iteration to start with

• nincrease (type: Integer, default: 500): the increase in the number of integrand evaluations per iteration

• nbatch (type: Integer, default: 1000): the batch size for sampling

Vegas samples points not all at once, but in batches of size nbatch, to avoid excessive memory consumption.
1000 is a reasonable value, though it should not affect performance too much

• gridno (type: Integer, default: 0): the slot in the internal grid table.

It may accelerate convergence to keep the grid accumulated during one integration for the next one, if the
integrands are reasonably similar to each other. Vegas maintains an internal table with space for ten grids for
this purpose. The slot in this grid is specified by gridno.

If a grid number between 1 and 10 is selected, the grid is not discarded at the end of the integration, but stored in
the respective slot of the table for a future invocation. The grid is only re-used if the dimension of the subsequent
integration is the same as the one it originates from.

In repeated invocations it may become necessary to flush a slot in memory, in which case the negative of the
grid number should be set.

Suave-Specific Keywords

These optional keywords can be passed only to suave():

• nnew (type: Integer, default: 1000): the number of new integrand evaluations in each subdivision

• nmin (type: Integer, default: 2): the minimum number of samples a former pass must contribute to a
subregion to be considered in that region’s compound integral value. Increasing nmin may reduce jumps in the
𝜒2 value

• flatness (type: Real, default: .25): the type of norm used to compute the fluctuation of a sample. This
determines how prominently “outliers”, i.e. individual samples with a large fluctuation, figure in the total fluctu-
ation, which in turn determines how a region is split up. As suggested by its name, flatness should be chosen
large for “flat” integrands and small for “volatile” integrands with high peaks. Note that since flatness ap-
pears in the exponent, one should not use too large values (say, no more than a few hundred) lest terms be
truncated internally to prevent overflow.

Divonne-Specific Keywords

These optional keywords can be passed only to divonne():

• key1 (type: Integer, default: 47): determines sampling in the partitioning phase: key1 = 7, 9, 11, 13
selects the cubature rule of degree key1. Note that the degree-11 rule is available only in 3 dimensions, the
degree-13 rule only in 2 dimensions.

For other values of key1, a quasi-random sample of 𝑛1 = |key1| points is used, where the sign of key1
determines the type of sample,

– key1 > 0, use a Korobov quasi-random sample,

– key1 < 0, use a “standard” sample (a Sobol quasi-random sample if seed = 0, otherwise a pseudo-
random sample).

8 Chapter 3. Usage
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– key2 (type: Integer, default: 1): determines sampling in the final integration phase:

key2 = 7, 9, 11, 13 selects the cubature rule of degree key2. Note that the degree-11 rule is available
only in 3 dimensions, the degree-13 rule only in 2 dimensions.

For other values of key2, a quasi-random sample is used, where the sign of key2 determines the type of
sample,

* key2 > 0, use a Korobov quasi-random sample,

* key2 < 0, use a “standard” sample (see description of key1 above),

and 𝑛2 = |key2| determines the number of points,

* 𝑛2 ≥ 40, sample 𝑛2 points,

* 𝑛2 < 40, sample 𝑛2 𝑛need points, where 𝑛need is the number of points needed to reach the prescribed
accuracy, as estimated by Divonne from the results of the partitioning phase

• key3 (type: Integer, default: 1): sets the strategy for the refinement phase:

key3 = 0, do not treat the subregion any further.

key3 = 1, split the subregion up once more.

Otherwise, the subregion is sampled a third time with key3 specifying the sampling parameters exactly as
key2 above.

• maxpass (type: Integer, default: 5): controls the thoroughness of the partitioning phase: The partitioning
phase terminates when the estimated total number of integrand evaluations (partitioning plus final integration)
does not decrease for maxpass successive iterations.

A decrease in points generally indicates that Divonne discovered new structures of the integrand and was able
to find a more effective partitioning. maxpass can be understood as the number of “safety” iterations that
are performed before the partition is accepted as final and counting consequently restarts at zero whenever new
structures are found.

• border (type: Real, default: 0.): the width of the border of the integration region. Points falling into this
border region will not be sampled directly, but will be extrapolated from two samples from the interior. Use a
non-zero border if the integrand function cannot produce values directly on the integration boundary

• maxchisq (type: Real, default: 10.): the 𝜒2 value a single subregion is allowed to have in the final integra-
tion phase. Regions which fail this 𝜒2 test and whose sample averages differ by more than mindeviation
move on to the refinement phase.

• mindeviation (type: Real, default: 0.25): a bound, given as the fraction of the requested error of the
entire integral, which determines whether it is worthwhile further examining a region that failed the 𝜒2 test.
Only if the two sampling averages obtained for the region differ by more than this bound is the region further
treated.

• ngiven (type: Integer, default: 0): the number of points in the xgiven array

• ldxgiven (type: Integer, default: 0): the leading dimension of xgiven, i.e. the offset between one point
and the next in memory

• xgiven (type: AbstractArray{Real}, default: zeros(typeof(0.0), ldxgiven, ngiven)):
a list of points where the integrand might have peaks. Divonne will consider these points when partitioning the
integration region. The idea here is to help the integrator find the extrema of the integrand in the presence of
very narrow peaks. Even if only the approximate location of such peaks is known, this can considerably speed
up convergence.

• nextra (type: Integer, default: 0): the maximum number of extra points the peak-finder subroutine will
return. If nextra is zero, peakfinder is not called and an arbitrary object may be passed in its place, e.g.
just 0

3.2. Optional Keywords 9
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• peakfinder (type: Ptr{Void}, default: C_NULL): the peak-finder subroutine

Cuhre-Specific Keyword

This optional keyword can be passed only to cuhre():

• key (type: Integer, default: 0): chooses the basic integration rule:

key = 7, 9, 11, 13 selects the cubature rule of degree key. Note that the degree-11 rule is available only in 3
dimensions, the degree-13 rule only in 2 dimensions.

For other values, the default rule is taken, which is the degree-13 rule in 2 dimensions, the degree-11 rule in 3
dimensions, and the degree-9 rule otherwise.

Output

The integrating functions vegas(), suave(), divonne(), and cuhre() return the 6-tuple

(integral, error, probability, neval, fail, nregions)

The first three elements of the tuple are arrays with length ncomp, the last three ones are scalars. In particular, if
you assign the output of integrator functions to the variable named result, you can access the value of the i-th
component of the integral with result[1][i] and the associated error with result[2][i].

• integral (type: Cdouble array with ncomp components): the integral of integrand over the unit hy-
percube

• error (type: Cdouble array with ncomp components): the presumed absolute error for each component of
integral

• probability (type: Cdouble array with ncomp components): the 𝜒2 -probability (not the 𝜒2 -value itself!)
that error is not a reliable estimate of the true integration error. To judge the reliability of the result expressed
through prob, remember that it is the null hypothesis that is tested by the 𝜒2 test, which is that error is a
reliable estimate. In statistics, the null hypothesis may be rejected only if prob is fairly close to unity, say
prob > .95

• neval (type: Cint): the actual number of integrand evaluations needed

• fail (type: Cint): an error flag:

– fail = 0, the desired accuracy was reached

– fail = -1, dimension out of range

– fail > 0, the accuracy goal was not met within the allowed maximum number of integrand evaluations.
While Vegas, Suave, and Cuhre simply return 1, Divonne can estimate the number of points by which
maxevals needs to be increased to reach the desired accuracy and returns this value.

• nregions (type: Cint): the actual number of subregions needed (always 0 in vegas())

10 Chapter 3. Usage



CHAPTER 4

Vectorization

Vectorization means evaluating the integrand function for several points at once. This is also known as Single In-
struction Multiple Data (SIMD) paradigm and is different from ordinary parallelization where independent threads are
executed concurrently. It is usually possible to employ vectorization on top of parallelization.

Cuba.jl cannot automatically vectorize the integrand function, of course, but it does pass (up to) nvec points per
integrand call (Common Keywords). This value need not correspond to the hardware vector length – computing several
points in one call can also make sense e.g. if the computations have significant intermediate results in common.

A note for disambiguation: The nbatch argument of Vegas is related in purpose but not identical to nvec. It
internally partitions the sampling done by Vegas but has no bearing on the number of points given to the integrand.
On the other hand, it it pointless to choose nvec > nbatch for Vegas.

11
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CHAPTER 5

Examples

One dimensional integral

The integrand of ∫︁ 1

0

log(𝑥)√
𝑥

d𝑥

has an algebraic-logarithmic divergence for 𝑥 = 0, but the integral is convergent and its value is −4. Cuba.jl
integrator routines can handle this class of functions and you can easily compute the numerical approximation of this
integral using one of the following commands:

vegas( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
# => -3.9981623937128483 ± 0.0004406643716840934
suave( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
# => -3.999976286717149 ± 0.0003950486666134314
divonne( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
# => -3.9997602130594374 ± 0.00035678748149012664
cuhre( (x,f) -> f[1] = log(x[1])/sqrt(x[1]))
# => -4.00000035506719 ± 0.0003395484028625721

Vector-valued integrand

Consider the integral ∫︁
Ω

𝑓(𝑥, 𝑦, 𝑧) d𝑥d𝑦 d𝑧

where Ω = [0, 1]3 and

𝑓(𝑥, 𝑦, 𝑧) =

(︂
sin(𝑥) cos(𝑦) exp(𝑧), exp(−(𝑥2 + 𝑦2 + 𝑧2)),

1

1 − 𝑥𝑦𝑧

)︂

13
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In this case it is more convenient to write a simple Julia script to compute the above integral

using Cuba

function integrand(x, f)
f[1] = sin(x[1])*cos(x[2])*exp(x[3])
f[2] = exp(-(x[1]^2 + x[2]^2 + x[3]^2))
f[3] = 1/(1 - x[1]*x[2]*x[3])

end

result = cuhre(integrand, 3, 3, abstol=1e-12, reltol=1e-10)
answer = [(e-1)*(1-cos(1))*sin(1), (sqrt(pi)*erf(1)/2)^3, zeta(3)]
for i = 1:3

println("Component ", i)
println(" Result of Cuba: ", result[1][i], " ± ", result[2][i])
println(" Exact result: ", answer[i])
println(" Actual error: ", abs(result[1][i] - answer[i]))

end

This is the output

Component 1
Result of Cuba: 0.6646696797813739 ± 1.0050367631018485e-13
Exact result: 0.6646696797813771
Actual error: 3.219646771412954e-15

Component 2
Result of Cuba: 0.4165383858806454 ± 2.932866749838454e-11
Exact result: 0.41653838588663805
Actual error: 5.9926508200192075e-12

Component 3
Result of Cuba: 1.2020569031649702 ± 1.1958522385908214e-10
Exact result: 1.2020569031595951
Actual error: 5.375033751420233e-12

Integral with non-constant boundaries

The integral ∫︁ 𝑦

−𝑦

∫︁ 𝑧

0

∫︁ 𝜋

0

cos(𝑥) sin(𝑦) exp(𝑧) d𝑥d𝑦 d𝑧

has non-constant boundaries. By applying the substitution rule repeatedly, you can scale the integrand function and
get this equivalent integral over the fixed domain Ω = [0, 1]3∫︁

Ω

2𝜋3𝑦𝑧2 cos(𝜋𝑦𝑧(2𝑥− 1)) sin(𝜋𝑦𝑧) exp(𝜋𝑧) d𝑥d𝑦 d𝑧

that can be computed with Cuba.jl using the following Julia script

using Cuba

function integrand(x, f)
f[1] = 2pi^3*x[2]*x[3]^2*cos(pi*x[2]*x[3]*(2*x[1] - 1.0))*

sin(pi*x[2]*x[3])*exp(pi*x[3])
end
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result = cuhre(integrand, 3, 1, abstol=1e-12, reltol=1e-10)
answer = pi*e^pi - (4e^pi - 4)/5
println("Result of Cuba: ", result[1][1], " ± ", result[2][1])
println("Exact result: ", answer)
println("Actual error: ", abs(result[1][1] - answer))

This is the output

Result of Cuba: 54.98607586826157 ± 5.460606521639899e-9
Exact result: 54.98607586789537
Actual error: 3.6619951515604043e-10

Integrals over Infinite Domains

Cuba.jl assumes always as integration domain the hypercube [0, 1]𝑛, but we have seen that using integration by
substitution we can calculate integrals over different domains as well. In the Introduction we also proposed two useful
substitutions that can be employed to change an infinite or semi-infinite domain into a finite one.

As a first example, consider the following integral with a semi-infinite domain:∫︁ ∞

0

log(1 + 𝑥2)

1 + 𝑥2
d𝑥

whose exact result is 𝜋 log 2. This can be computed with the following Julia script:

using Cuba

# The function we want to integrate over [0, ∞).
func(x) = log(1 + x^2)/(1 + x^2)

# Scale the function in order to integrate over [0, 1].
function integrand(x, f)

f[1] = func(x[1]/(1 - x[1]))/(1 - x[1])^2
end

result = cuhre(integrand, abstol = 1e-12, reltol = 1e-10)
answer = pi*log(2)
println("Result of Cuba: ", result[1][1], " ± ", result[2][1])
println("Exact result: ", answer)
println("Actual error: ", abs(result[1][1] - answer))

This is the output:

Result of Cuba: 2.177586090305688 ± 2.1503995410096295e-10
Exact result: 2.177586090303602
Actual error: 2.085887018665744e-12

Now we want to calculate this integral, over an infinite domain∫︁ ∞

−∞

1 − cos𝑥

𝑥2
d𝑥

which gives 𝜋. You can calculate the result with the code below. Note that integrand function has value 1/2 for 𝑥 = 0,
but you have to inform Julia about this.

5.4. Integrals over Infinite Domains 15
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using Cuba

# The function we want to integrate over (-∞, ∞).
func(x) = x==0 ? 0.5*one(x) : (1 - cos(x))/x^2

# Scale the function in order to integrate over [0, 1].
function integrand(x, f)

f[1] = func((2*x[1] - 1)/x[1]/(1 - x[1])) *
(2*x[1]^2 - 2*x[1] + 1)/x[1]^2/(1 - x[1])^2

end

result = cuhre(integrand, abstol = 1e-7, reltol = 1e-7)
answer = float(pi)
println("Result of Cuba: ", result[1][1], " ± ", result[2][1])
println("Exact result: ", answer)
println("Actual error: ", abs(result[1][1] - answer))

The output of this script is

Result of Cuba: 3.1415928900555046 ± 2.050669142074607e-6
Exact result: 3.141592653589793
Actual error: 2.3646571145619077e-7

Complex integrand

As already explained, Cuba.jl operates on real quantities, so if you want to integrate a complex-valued function of
complex arguments you have to treat complex quantities as 2-component arrays of real numbers. For example, if you
do not remember Euler’s formula, you can compute this simple integral∫︁ 𝜋/2

0

exp(i𝑥) d𝑥

with the following Julia script

using Cuba

function integrand(x, f)
# Complex integrand, scaled to integrate in [0, 1].
tmp = cis(x[1]*pi/2)*pi/2
# Assign to two components of "f" the real
# and imaginary part of the integrand.
f[1] = real(tmp)
f[2] = imag(tmp)

end

result = cuhre(integrand, 1, 2)
println("Result of Cuba: ", complex(result[1]...))
println("Exact result: ", complex(1.0, 1.0))

This is the output

Result of Cuba: 1.0 + 1.0im
Exact result: 1.0 + 1.0im
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Passing data to the integrand function

Cuba Library allows program written in C and Fortran to pass extra data to the integrand function with userdata
argument. This is useful, for example, when the integrand function depends on changing parameters. In Cuba.jl
the userdata argument is not available, but you do not normally need it.

For example, the cumulative distribution function 𝐹 (𝑥; 𝑘) of chi-squared distribution is defined by

𝐹 (𝑥; 𝑘) =

∫︁ 𝑥

0

𝑡𝑘/2−1 exp(−𝑡/2)

2𝑘/2Γ(𝑘/2)
d𝑡

The cumulative distribution function depends on parameter 𝑘, but the function passed as integrand to Cuba.jl
integrator routines accepts as arguments only the input and output vectors. However you can easily define a function
to calculate a numerical approximation of 𝐹 (𝑥; 𝑘) based on the above integral expression because the integrand can
access any variable visible in its scope. The following Julia script computes 𝐹 (𝑥 = 𝜋; 𝑘) for different 𝑘 and compares
the result with more precise values, based on the analytic expression of the cumulative distribution function, provided
by GSL.jl package.

using Cuba, GSL

function chi2cdf(x::Real, k::Real)
k2 = k/2
# Chi-squared probability density function, without constant denominator.
# The result of integration will be divided by that factor.
function chi2pdf(t::Float64)

# "k2" is taken from the outside.
return t^(k2 - 1.0)*exp(-t/2)

end
# Neither "x" is passed directly to the integrand function,
# but is visible to it. "x" is used to scale the function
# in order to actually integrate in [0, 1].
x*cuhre((t,f) -> f[1] = chi2pdf(t[1]*x))[1][1]/(2^k2*gamma(k2))

end

x = pi
@printf("Result of Cuba: %.6f %.6f %.6f %.6f %.6f\n",

map((k) -> chi2cdf(x, k), collect(1:5))...)
@printf("Exact result: %.6f %.6f %.6f %.6f %.6f\n",

map((k) -> cdf_chisq_P(x, k), collect(1:5))...)

This is the output

Result of Cuba: 0.923681 0.792120 0.629694 0.465584 0.321833
Exact result: 0.923681 0.792120 0.629695 0.465584 0.321833

5.6. Passing data to the integrand function 17
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CHAPTER 6

Performance

Cuba.jl cannot (yet?) take advantage of parallelization capabilities of Cuba Library. Nonetheless, it has perfor-
mances comparable with equivalent native C or Fortran codes based on Cuba library when CUBACORES environment
variable is set to 0 (i.e., multithreading is disabled). The following is the result of running the benchmark present
in test directory on a 64-bit GNU/Linux system running Julia 0.6.0-dev.72. The C and FORTRAN 77 benchmark
codes have been compiled with GCC 5.4.0.

$ CUBACORES=0 julia -e 'cd(Pkg.dir("Cuba")); include("test/benchmark.jl")'
INFO: Performance of Cuba.jl:

0.318776 seconds (Vegas)
0.665132 seconds (Suave)
0.369386 seconds (Divonne)
0.284738 seconds (Cuhre)

INFO: Performance of Cuba Library in C:
0.344432 seconds (Vegas)
0.666233 seconds (Suave)
0.374605 seconds (Divonne)
0.309294 seconds (Cuhre)

INFO: Performance of Cuba Library in Fortran:
0.324000 seconds (Vegas)
0.640000 seconds (Suave)
0.364000 seconds (Divonne)
0.284000 seconds (Cuhre)

Of course, native C and Fortran codes making use of Cuba Library outperform Cuba.jl when higher values of
CUBACORES are used, for example:

$ CUBACORES=1 julia -e 'cd(Pkg.dir("Cuba")); include("test/benchmark.jl")'
INFO: Performance of Cuba.jl:

0.322994 seconds (Vegas)
0.638098 seconds (Suave)
0.371486 seconds (Divonne)
0.284845 seconds (Cuhre)

INFO: Performance of Cuba Library in C:
0.103477 seconds (Vegas)
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0.647665 seconds (Suave)
0.159992 seconds (Divonne)
0.088057 seconds (Cuhre)

INFO: Performance of Cuba Library in Fortran:
0.096000 seconds (Vegas)
0.660000 seconds (Suave)
0.176000 seconds (Divonne)
0.088000 seconds (Cuhre)

Cuba.jl internally fixes CUBACORES to 0 in order to prevent from forking julia processes that would only slow
down calculations eating up the memory, without actually taking advantage of concurrency. Furthemore, without this
measure, adding more Julia processes with addprocs() would only make the program segfault.
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CHAPTER 7

Related projects

Another Julia package for multidimenensional numerical integration is available: Cubature.jl, by Steven G. Johnson.

21
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CHAPTER 8

Development

Cuba.jl is developed on GitHub: https://github.com/giordano/Cuba.jl. Feel free to report bugs and make sugges-
tions at https://github.com/giordano/Cuba.jl/issues.

History

The ChangeLog of the package is available in NEWS.md file in top directory. There have been some breaking changes
from time to time, beware of them when upgrading the package.

23
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CHAPTER 9

License

The Cuba.jl package is licensed under the GNU Lesser General Public License, the same as Cuba library. The original
author is Mosè Giordano.
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CHAPTER 10

Credits

If you use this library for your work, please credit Thomas Hahn. Citable papers about Cuba Library:

• Hahn, T. 2005, Computer Physics Communications, 168, 78. DOI:10.1016/j.cpc.2005.01.010. arXiv:hep-
ph/0404043. Bibcode:2005CoPhC.168...78H.

• Hahn, T. 2015, Journal of Physics Conference Series, 608, 012066. DOI:10.1088/1742-6596/608/1/012066.
arXiv:1408.6373. Bibcode:2015JPhCS.608a2066H.
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