

 Navigation

 	
 index

 	Cuba.jl 0.1.0 documentation

Cuba

Introduction

Cuba.jl is a Julia [http://julialang.org/] library for multidimensional
numerical integration [https://en.wikipedia.org/wiki/Numerical_integration]
of real-valued functions of real arguments, using different algorithms.

This is just a Julia wrapper around the C Cuba library [http://www.feynarts.de/cuba/], version 4.2, by Thomas Hahn. All the
credits goes to him for the underlying functions, blame me for any problem with
the Julia interface. Cuba.jl is developed on GitHub:
https://github.com/giordano/Cuba.jl. Feel free to report bugs and make
suggestions at https://github.com/giordano/Cuba.jl/issues.

All algorithms provided by Cuba library are supported in Cuba.jl:

	Algorithm
	Basic integration method
	Type
	Variance reduction [https://en.wikipedia.org/wiki/Variance_reduction]

	Vegas [https://en.wikipedia.org/wiki/VEGAS_algorithm]
	Sobol quasi-random sample [https://en.wikipedia.org/wiki/Sobol_sequence]
	Monte Carlo [https://en.wikipedia.org/wiki/Monte_Carlo_integration]
	importance sampling [https://en.wikipedia.org/wiki/Importance_sampling]

	or Mersenne Twister pseudo-random sample [https://en.wikipedia.org/wiki/Mersenne_Twister]
	Monte Carlo

	or Ranlux pseudo-random sample [http://arxiv.org/abs/hep-lat/9309020]
	Monte Carlo

	Suave
	Sobol quasi-random sample
	Monte Carlo
	globally adaptive subdivision [https://en.wikipedia.org/wiki/Adaptive_quadrature]

and importance sampling

	or Mersenne Twister pseudo-random sample
	Monte Carlo

	or Ranlux pseudo-random sample
	Monte Carlo

	Divonne
	Korobov quasi-random sample
	Monte Carlo
	stratified sampling

aided by methods from

numerical optimization

	or Sobol quasi-random sample
	Monte Carlo

	or Mersenne Twister pseudo-random sample
	Monte Carlo

	or Ranlux pseudo-random sample
	Monte Carlo

	or cubature rules
	deterministic

	Cuhre
	cubature rules
	deterministic
	globally adaptive subdivision

For more details on the algorithms see the manual included in Cuba library and
available in deps/cuba-julia/cuba.pdf after successful installation
of Cuba.jl.

Integration is performed on the \(n\)-dimensional unit hypercube [https://en.wikipedia.org/wiki/Hypercube] \([0, 1]^{n}\). If you want to
compute an integral over a different set, you have to scale the integrand
function in order to have an equivalent integral on \([0, 1]^{n}\). For
example, recall [https://en.wikipedia.org/wiki/Integration_by_substitution]
that in one dimension

\[\int_{a}^{b} \mathrm{d}x\,f[x] = \int_{0}^{1} \mathrm{d}y\,f[a + (b - a) y] (b - a)\]

where the final \((b - a)\) is the one-dimensional version of the Jacobian.
This generalizes straightforwardly to more than one dimension. In Examples
section you can find the computation of a 3-dimensional integral with
non-constant boundaries using Cuba.jl.

Note: This package has been tested only on GNU/Linux and OS X systems.
Trying to install on Windows will likely fail, please report at
https://github.com/giordano/Cuba.jl/issues/2 if you manage to install
Cuba.jl on this system.

Installation

Cuba.jl is available for Julia 0.4 and later versions, and can be
installed with Julia built-in package
manager [http://docs.julialang.org/en/stable/manual/packages/]. In a
Julia session run the command

julia> Pkg.add("Cuba")

The build script will download Cuba Library source code and build the Cuba
shared object. In order to accomplish this task a C compiler is needed.

You may need to update your package list with Pkg.update() in order
to get the latest version of Cuba.jl.

Usage

After installing the package, run

using Cuba

or put this command into your Julia script.

Cuba.jl provides four functions to integrate, one for each algorithm:

	
Vegas(integrand, ndim, ncomp[, keywords...])

	

	
Suave(integrand, ndim, ncomp[, keywords...])

	

	
Divonne(integrand, ndim, ncomp[, keywords...])

	

	
Cuhre(integrand, ndim, ncomp[, keywords...])

	

Large parts of the following sections are borrowed from Cuba manual. Refer to
it for more information on the details.

Mandatory Arguments

Mandatory arguments of integrator functions are:

	integrand (type: Function): the function to be integrated

	ndim (type: Integer): the number of dimensions of the integral

	ncomp (type: Integer): the number of components of the integrand

integrand should be a function integrand(x, f) taking two arguments:

	the input vector x of length ndim

	the output vector f of length ncomp, used to set the value of each
component of the integrand at point x

Also anonymous functions [http://docs.julialang.org/en/stable/manual/functions/#anonymous-functions]
are allowed as integrand. For those familiar with Cubature.jl package,
this is the same syntax used for integrating vector-valued functions.

For example, the integral

\[\int_{0}^{1} \cos (x) \,\mathrm{d}x = \sin(1) = 0.8414709848078965\]

can be computed with one of the following lines

Vegas((x,f)->f[1]=cos(x[1]), 1, 1)
=> 0.8414910005259609 ± 5.2708169787733e-5
Suave((x,f)->f[1]=cos(x[1]), 1, 1)
=> 0.8411523690658836 ± 8.357995611133613e-5
Divonne((x,f)->f[1]=cos(x[1]), 1, 1)
=> 0.841468071955942 ± 5.3955070531551656e-5
Cuhre((x,f)->f[1]=cos(x[1]), 1, 1)
=> 0.8414709848078966 ± 2.2204460420128823e-16

In section Examples you can find more complete examples. Note that x and
f are both arrays with type Float64, so Cuba.jl can be used to
integrate real-valued functions of real arguments. See how to work with complex
quantitites in the example Complex integrand.

Note: if you used Cuba.jl until version 0.4, be aware that the user
interface has been reworked in version 0.5 in a backward incompatible way.

Optional Keywords

All other arguments required by Cuba integrator routines can be passed as
optional keywords. Cuba.jl uses some reasonable default values in order to
enable users to invoke integrator functions with a minimal set of arguments.
Anyway, if you want to make sure future changes to some default values of
keywords will not affect your current script, explicitely specify the value of
the keywords.

Common Keywords

These are optional keywords common to all functions:

	nvec (type: Integer, default: 1): the maximum number of points to
be given to the integrand routine in each invocation. Usually this is 1 but
if the integrand can profit from e.g. Single Instruction Multiple Data (SIMD)
vectorization, a larger value can be chosen. See Vectorization section.

	epsrel (type: Real, default: 1e-4), and epsabs (type:
Real, default: 1e-12): the requested relative
(\(\varepsilon_{\text{rel}}\)) and absolute
(\(\varepsilon_{\text{abs}}\)) accuracies. The integrator tries to find
an estimate \(\hat{I}\) for the integral \(I\) which for every
component \(c\) fulfills \(|\hat{I}_c - I_c|\leq
\max(\varepsilon_{\text{abs}}, \varepsilon_{\text{rel}} |I_c|)\).

	flags (type: Integer, default: 0): flags governing the integration:

	Bits 0 and 1 are taken as the verbosity level, i.e. 0 to 3, unless
the CUBAVERBOSE environment variable contains an even higher value (used
for debugging).

Level 0 does not print any output, level 1 prints “reasonable”
information on the progress of the integration, level 2 also echoes the
input parameters, and level 3 further prints the subregion results (if
applicable).

	Bit 2 = 0: all sets of samples collected on a subregion during the
various iterations or phases contribute to the final result.

Bit 2 = 1, only the last (largest) set of samples is used in the final
result.

	(Vegas and Suave only)

Bit 3 = 0, apply additional smoothing to the importance function, this
moderately improves convergence for many integrands.

Bit 3 = 1, use the importance function without smoothing, this should be
chosen if the integrand has sharp edges.

	Bit 4 = 0, delete the state file (if one is chosen) when the integration
terminates successfully.

Bit 4 = 1, retain the state file.

	(Vegas only)

Bit 5 = 0, take the integrator’s state from the state file, if one is
present.

Bit 5 = 1, reset the integrator’s state even if a state file is present,
i.e. keep only the grid. Together with Bit 4 this allows a grid adapted by
one integration to be used for another integrand.

	Bits 8–31 =: level determines the random-number generator.

To select e.g. last samples only and verbosity level 2, pass 6 = 4 + 2 for
the flags.

	seed (type: Integer, default: 0): the seed for the
pseudo-random-number generator. This keyword is not available for Cuhre.
The random-number generator is chosen as follows:

	seed
	level
(bits 8–31 of flags)
	Generator

	zero
	N/A
	Sobol (quasi-random)

	non-zero
	zero
	Mersenne Twister (pseudo-random)

	non-zero
	non-zero
	Ranlux (pseudo-random)

Ranlux implements Marsaglia and Zaman’s 24-bit RCARRY algorithm with
generation period \(p\), i.e. for every 24 generated numbers used, another
\(p - 24\) are skipped. The luxury level is encoded in level as
follows:

	Level 1 (\(p = 48\)): very long period, passes the gap test but fails
spectral test.

	Level 2 (\(p = 97\)): passes all known tests, but theoretically still
defective.

	Level 3 (\(p = 223\)): any theoretically possible correlations have very
small chance of being observed.

	Level 4 (\(p = 389\)): highest possible luxury, all 24 bits chaotic.

Levels 5–23 default to 3, values above 24 directly specify the period
\(p\). Note that Ranlux’s original level 0, (mis)used for selecting
Mersenne Twister in Cuba, is equivalent to level = 24.

	mineval (type: Real, default: 0): the minimum number of integrand
evaluations required

	maxeval (type: Real, default: 1000000): the (approximate) maximum
number of integrand evaluations allowed

	statefile (type: AbstractString, default: ""): a filename for
storing the internal state. To not store the internal state, put ""
(empty string, this is the default) or C_NULL (C null pointer).

Cuba can store its entire internal state (i.e. all the information to resume
an interrupted integration) in an external file. The state file is updated
after every iteration. If, on a subsequent invocation, a Cuba routine finds a
file of the specified name, it loads the internal state and continues from the
point it left off. Needless to say, using an existing state file with a
different integrand generally leads to wrong results.

This feature is useful mainly to define “check-points” in long-running
integrations from which the calculation can be restarted.

Once the integration reaches the prescribed accuracy, the state file is
removed, unless bit 4 of flags (see above) explicitly requests that it be
kept.

	spin (type: Ptr{Void}, default: C_NULL): this is the placeholder
for the “spinning cores” pointer. Cuba.jl does not support
parallelization, so this keyword should not have a value different from
C_NULL.

Vegas-Specific Keywords

These optional keywords can be passed only to Vegas():

	nstart (type: Integer, default: 1000): the number of integrand
evaluations per iteration to start with

	nincrease (type: Integer, default: 500): the increase in the
number of integrand evaluations per iteration

	nbatch (type: Integer, default: 1000): the batch size for sampling

Vegas samples points not all at once, but in batches of size nbatch, to
avoid excessive memory consumption. 1000 is a reasonable value, though it
should not affect performance too much

	gridno (type: Integer, default: 0): the slot in the internal grid table.

It may accelerate convergence to keep the grid accumulated during one
integration for the next one, if the integrands are reasonably similar to each
other. Vegas maintains an internal table with space for ten grids for this
purpose. The slot in this grid is specified by gridno.

If a grid number between 1 and 10 is selected, the grid is not
discarded at the end of the integration, but stored in the respective slot of
the table for a future invocation. The grid is only re-used if the dimension
of the subsequent integration is the same as the one it originates from.

In repeated invocations it may become necessary to flush a slot in memory, in
which case the negative of the grid number should be set.

Suave-Specific Keywords

These optional keywords can be passed only to Suave():

	nnew (type: Integer, default: 1000): the number of new integrand
evaluations in each subdivision

	nmin (type: Integer, default: 2): the minimum number of samples a
former pass must contribute to a subregion to be considered in that region’s
compound integral value. Increasing nmin may reduce jumps in the
\(\chi^2\) value

	flatness (type: Real, default: .25): the type of norm used to
compute the fluctuation of a sample. This determines how prominently
“outliers”, i.e. individual samples with a large fluctuation, figure in the
total fluctuation, which in turn determines how a region is split up. As
suggested by its name, flatness should be chosen large for “flat”
integrands and small for “volatile” integrands with high peaks. Note that
since flatness appears in the exponent, one should not use too large
values (say, no more than a few hundred) lest terms be truncated internally to
prevent overflow.

Divonne-Specific Keywords

These optional keywords can be passed only to Divonne():

	key1 (type: Integer, default: 47): determines sampling in the
partitioning phase: key1 \(= 7, 9, 11, 13\) selects the cubature rule
of degree key1. Note that the degree-11 rule is available only in 3
dimensions, the degree-13 rule only in 2 dimensions.

For other values of key1, a quasi-random sample of \(n_1 =
|\verb|key1||\) points is used, where the sign of key1 determines the type
of sample,

	key1 \(> 0\), use a Korobov quasi-random sample,

	key1 \(< 0\), use a “standard” sample (a Sobol quasi-random sample
if seed \(= 0\), otherwise a pseudo-random sample).

	key2 (type: Integer, default: 1): determines sampling in the
final integration phase:

key2 \(= 7, 9, 11, 13\) selects the cubature rule of degree key2.
Note that the degree-11 rule is available only in 3 dimensions, the
degree-13 rule only in 2 dimensions.

For other values of key2, a quasi-random sample is used, where the sign
of key2 determines the type of sample,

	key2 \(> 0\), use a Korobov quasi-random sample,

	key2 \(< 0\), use a “standard” sample (see description of key1
above),

and \(n_2 = |\verb|key2||\) determines the number of points,

	\(n_2\geq 40\), sample \(n_2\) points,

	\(n_2 < 40\), sample \(n_2\,n_{\text{need}}\) points, where
\(n_{\text{need}}\) is the number of points needed to reach the
prescribed accuracy, as estimated by Divonne from the results of the
partitioning phase

	key3 (type: Integer, default: 1): sets the strategy for the
refinement phase:

key3 \(= 0\), do not treat the subregion any further.

key3 \(= 1\), split the subregion up once more.

Otherwise, the subregion is sampled a third time with key3 specifying the
sampling parameters exactly as key2 above.

	maxpass (type: Integer, default: 5): controls the thoroughness of
the partitioning phase: The partitioning phase terminates when the estimated
total number of integrand evaluations (partitioning plus final integration)
does not decrease for maxpass successive iterations.

A decrease in points generally indicates that Divonne discovered new
structures of the integrand and was able to find a more effective
partitioning. maxpass can be understood as the number of “safety”
iterations that are performed before the partition is accepted as final and
counting consequently restarts at zero whenever new structures are found.

	border (type: Real, default: 0.): the width of the border of the
integration region. Points falling into this border region will not be
sampled directly, but will be extrapolated from two samples from the interior.
Use a non-zero border if the integrand function cannot produce values
directly on the integration boundary

	maxchisq (type: Real, default: 10.): the \(\chi^2\) value a
single subregion is allowed to have in the final integration phase. Regions
which fail this \(\chi^2\) test and whose sample averages differ by more
than mindeviation move on to the refinement phase.

	mindeviation (type: Real, default: 0.25): a bound, given as the
fraction of the requested error of the entire integral, which determines
whether it is worthwhile further examining a region that failed the
\(\chi^2\) test. Only if the two sampling averages obtained for the
region differ by more than this bound is the region further treated.

	ngiven (type: Integer, default: 0): the number of points in the
xgiven array

	ldxgiven (type: Integer, default: 0): the leading dimension of
xgiven, i.e. the offset between one point and the next in memory

	xgiven (type: AbstractArray{Real}, default: zeros(typeof(0.0),
ldxgiven, ngiven)): a list of points where the integrand might have peaks.
Divonne will consider these points when partitioning the integration region.
The idea here is to help the integrator find the extrema of the integrand in
the presence of very narrow peaks. Even if only the approximate location of
such peaks is known, this can considerably speed up convergence.

	nextra (type: Integer, default: 0): the maximum number of extra
points the peak-finder subroutine will return. If nextra is zero,
peakfinder is not called and an arbitrary object may be passed in its
place, e.g. just 0

	peakfinder (type: Ptr{Void}, default: C_NULL): the peak-finder
subroutine

Cuhre-Specific Keyword

This optional keyword can be passed only to Cuhre():

	key (type: Integer, default: 0): chooses the basic integration rule:

key \(= 7, 9, 11, 13\) selects the cubature rule of degree key.
Note that the degree-11 rule is available only in 3 dimensions, the degree-13
rule only in 2 dimensions.

For other values, the default rule is taken, which is the degree-13 rule in 2
dimensions, the degree-11 rule in 3 dimensions, and the degree-9 rule
otherwise.

Output

The integrating functions Vegas(), Suave(), Divonne(), and
Cuhre() return the 6-tuple

(integral, error, probability, neval, fail, nregions)

The first three elements of the tuple are arrays with length ncomp, the last
three ones are scalars. In particular, if you assign the output of integrator
functions to the variable named result, you can access the value of the
i-th component of the integral with result[1][i] and the associated
error with result[2][i].

	integral (type: Cdouble array with ncomp components): the integral
of integrand over the unit hypercube

	error (type: Cdouble array with ncomp components): the presumed
absolute error for each component of integral

	probability (type: Cdouble array with ncomp components): the
\(\chi^2\) -probability (not the \(\chi^2\) -value itself!) that
error is not a reliable estimate of the true integration error. To judge
the reliability of the result expressed through prob, remember that it is
the null hypothesis that is tested by the \(\chi^2\) test, which is that
error is a reliable estimate. In statistics, the null hypothesis may be
rejected only if prob is fairly close to unity, say prob \(>.95\)

	neval (type: Cint): the actual number of integrand evaluations needed

	fail (type: Cint): an error flag:
	fail = 0, the desired accuracy was reached

	fail = -1, dimension out of range

	fail > 0, the accuracy goal was not met within the allowed maximum
number of integrand evaluations. While Vegas, Suave, and Cuhre simply
return 1, Divonne can estimate the number of points by which maxeval
needs to be increased to reach the desired accuracy and returns this value.

	nregions (type: Cint): the actual number of subregions needed (always
0 in Vegas)

Vectorization

Vectorization means evaluating the integrand function for several points at
once. This is also known as Single Instruction Multiple Data [https://en.wikipedia.org/wiki/SIMD] (SIMD) paradigm and is different from
ordinary parallelization where independent threads are executed concurrently.
It is usually possible to employ vectorization on top of parallelization.

Cuba.jl cannot automatically vectorize the integrand function, of course,
but it does pass (up to) nvec points per integrand call (Common
Keywords). This value need not correspond to the hardware vector length –
computing several points in one call can also make sense e.g. if the
computations have significant intermediate results in common.

A note for disambiguation: The nbatch argument of Vegas is related in
purpose but not identical to nvec. It internally partitions the sampling
done by Vegas but has no bearing on the number of points given to the integrand.
On the other hand, it it pointless to choose nvec > nbatch for Vegas.

Examples

One dimensional integral

The integrand of

\[\int_{0}^{1} \frac{\log(x)}{\sqrt{x}} \,\mathrm{d}x\]

has an algebraic-logarithmic divergence for \(x = 0\), but the integral is
convergent and its value is \(-4\). Cuba.jl integrator routines can
handle this class of functions and you can easily compute the numerical
approximation of this integral using one of the following commands:

Vegas((x,f) -> f[1] = log(x[1])/sqrt(x[1]), 1, 1)
=> -3.9981623937128483 ± 0.0004406643716840934
Suave((x,f) -> f[1] = log(x[1])/sqrt(x[1]), 1, 1)
=> -3.999976286717149 ± 0.0003950486666134314
Divonne((x,f) -> f[1] = log(x[1])/sqrt(x[1]), 1, 1)
=> -3.9997602130594374 ± 0.00035678748149012664
Cuhre((x,f) -> f[1] = log(x[1])/sqrt(x[1]), 1, 1)
=> -4.00000035506719 ± 0.0003395484028625721

Vector-valued integrand

Consider the integral

\[\int\limits_{\Omega} \boldsymbol{f}(x,y,z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\]

where \(\Omega = [0, 1]^{3}\) and

\[\boldsymbol{f}(x,y,z) = \left(\sin(x)\cos(y)\exp(z), \,\exp(-(x^2 + y^2 +
z^2)), \,\frac{1}{1 - xyz}\right)\]

In this case it is more convenient to write a simple Julia script to compute the
above integral

using Cuba

function integrand(x, f)
 f[1] = sin(x[1])*cos(x[2])*exp(x[3])
 f[2] = exp(-(x[1]^2 + x[2]^2 + x[3]^2))
 f[3] = 1/(1 - x[1]*x[2]*x[3])
end

result = Cuhre(integrand, 3, 3, epsabs=1e-12, epsrel=1e-10)
answer = [(e-1)*(1-cos(1))*sin(1), (sqrt(pi)*erf(1)/2)^3, zeta(3)]
for i = 1:3
 println("Component $i")
 println(" Result of Cuba: ", result[1][i], " ± ", result[2][i])
 println(" Exact result: ", answer[i])
 println(" Actual error: ", abs(result[1][i] - answer[i]))
end

This is the output

Component 1
 Result of Cuba: 0.6646696797813739 ± 1.0050367631018485e-13
 Exact result: 0.6646696797813771
 Actual error: 3.219646771412954e-15
Component 2
 Result of Cuba: 0.4165383858806454 ± 2.932866749838454e-11
 Exact result: 0.41653838588663805
 Actual error: 5.9926508200192075e-12
Component 3
 Result of Cuba: 1.2020569031649702 ± 1.1958522385908214e-10
 Exact result: 1.2020569031595951
 Actual error: 5.375033751420233e-12

Integral with non-constant boundaries

The integral

\[\int_{-y}^{y}\int_{0}^{z}\int_{0}^{\pi} \cos(x)\sin(y)\exp(z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\]

has non-constant boundaries. By applying the substitution rule repeatedly, you
can scale the integrand function and get this equivalent integral over the fixed
domain \(\Omega = [0, 1]^{3}\)

\[\int\limits_{\Omega} 2\pi^{3}yz^2 \cos(\pi yz(2x - 1)) \sin(\pi yz)
\exp(\pi z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\]

that can be computed with Cuba.jl using the following Julia script

using Cuba

function integrand(x, f)
 f[1] = 2pi^3*x[2]*x[3]^2*cos(pi*x[2]*x[3]*(2*x[1] - 1.0))*
 sin(pi*x[2]*x[3])*exp(pi*x[3])
end

result = Cuhre(integrand, 3, 1, epsabs=1e-12, epsrel=1e-10)
answer = pi*e^pi - (4e^pi - 4)/5
println("Result of Cuba: ", result[1][1], " ± ", result[2][1])
println("Exact result: ", answer)
println("Actual error: ", abs(result[1][1] - answer))

This is the output

Result of Cuba: 54.98607586826157 ± 5.460606521639899e-9
Exact result: 54.98607586789537
Actual error: 3.6619951515604043e-10

Complex integrand

As already explained, Cuba.jl operates on real quantities, so if you want to
integrate a complex-valued function of complex arguments you have to treat
complex quantities as 2-component arrays of real numbers. For example, if you
do not remember Euler’s formula [https://en.wikipedia.org/wiki/Euler%27s_formula], you can compute this
simple integral

\[\int_{0}^{\pi/2} \exp(\mathrm{i} x)\,\mathrm{d}x\]

with the following Julia script

using Cuba

function integrand(x, f)
 # Complex integrand, scaled to integrate in [0, 1].
 tmp = exp(im*x[1]*pi/2)*pi/2
 # Assign to two components of "f" the real
 # and imaginary part of the integrand.
 f[1] = real(tmp)
 f[2] = imag(tmp)
end

result = Cuhre(integrand, 1, 2)
println("Result of Cuba: ", result[1][1] + im*result[1][2])
println("Exact result: ", complex(1.0, 1.0))

This is the output

Result of Cuba: 1.0 + 1.0im
Exact result: 1.0 + 1.0im

Passing data to the integrand function

Cuba Library allows program written in C and Fortran to pass extra data to the
integrand function with userdata argument. This is useful, for example,
when the integrand function depends on changing parameters. In Cuba.jl the
userdata argument is not available, but you do not normally need it.

For example, the cumulative distribution function [https://en.wikipedia.org/wiki/Cumulative_distribution_function]
\(F(x;k)\) of chi-squared distribution [https://en.wikipedia.org/wiki/Chi-squared_distribution] is defined by

\[F(x; k) = \int_{0}^{x} \frac{t^{k/2 - 1}\exp(-t/2)}{2^{k/2}\Gamma(k/2)} \,\mathrm{d}t\]

The cumulative distribution function depends on parameter \(k\), but the
function passed as integrand to Cuba.jl integrator routines accepts as
arguments only the input and output vectors. However you can easily define a
function to calculate a numerical approximation of \(F(x; k)\) based on the
above integral expression because the integrand can access any variable visible
in its scope [http://docs.julialang.org/en/stable/manual/variables-and-scoping/]. The
following Julia script computes \(F(x = \pi; k)\) for different \(k\)
and compares the result with more precise values, based on the analytic
expression of the cumulative distribution function, provided by GSL.jl [https://github.com/jiahao/GSL.jl] package.

using Cuba, GSL

function chi2cdf(x::Real, k::Real)
 k2 = k/2
 # Chi-squared probability density function, without constant denominator.
 # The result of integration will be divided by that factor.
 function chi2pdf(t::Float64)
 # "k2" is taken from the outside.
 return t^(k2 - 1.0)*exp(-t/2)
 end
 # Neither "x" is passed directly to the integrand function,
 # but is visible to it. "x" is used to scale the function
 # in order to actually integrate in [0, 1].
 x*Cuhre((t,f) -> f[1] = chi2pdf(t[1]*x), 1, 1)[1][1]/(2^k2*gamma(k2))
end

x = pi
@printf("Result of Cuba: %.6f %.6f %.6f %.6f %.6f\n",
 map((k) -> chi2cdf(x, k), collect(1:5))...)
@printf("Exact result: %.6f %.6f %.6f %.6f %.6f\n",
 map((k) -> cdf_chisq_P(x, k), collect(1:5))...)

This is the output

Result of Cuba: 0.923681 0.792120 0.629694 0.465584 0.321833
Exact result: 0.923681 0.792120 0.629695 0.465584 0.321833

Performance

Cuba.jl cannot (yet? [https://github.com/giordano/Cuba.jl/issues/1])
take advantage of parallelization capabilities of Cuba Library. Nonetheless, it
has performances comparable with equivalent native C or Fortran codes based on
Cuba library when CUBACORES environment variable is set to 0 (i.e.,
multithreading is disabled). The following is the result of running the
benchmark present in test directory on a 64-bit GNU/Linux system running
Julia 0.4.3. The C and FORTRAN 77 benchmark codes have been compiled with GCC
5.3.1.

$ CUBACORES=0 julia -e 'cd(Pkg.dir("Cuba")); include("test/benchmark.jl")'
INFO: Performance of Cuba.jl:
 0.340635 seconds (Vegas)
 0.660305 seconds (Suave)
 0.391721 seconds (Divonne)
 0.305756 seconds (Cuhre)
INFO: Performance of Cuba Library in C:
 0.352429 seconds (Vegas)
 0.668258 seconds (Suave)
 0.380006 seconds (Divonne)
 0.305772 seconds (Cuhre)
INFO: Performance of Cuba Library in Fortran:
 0.328000 seconds (Vegas)
 0.660000 seconds (Suave)
 0.364000 seconds (Divonne)
 0.296000 seconds (Cuhre)

Of course, native C and Fortran codes making use of Cuba Library outperform
Cuba.jl when higher values of CUBACORES are used, for example:

$ CUBACORES=1 julia -e 'cd(Pkg.dir("Cuba")); include("test/benchmark.jl")'
INFO: Performance of Cuba.jl:
 0.342575 seconds (Vegas)
 0.660071 seconds (Suave)
 0.393213 seconds (Divonne)
 0.304569 seconds (Cuhre)
INFO: Performance of Cuba Library in C:
 0.118911 seconds (Vegas)
 0.614480 seconds (Suave)
 0.153015 seconds (Divonne)
 0.086997 seconds (Cuhre)
INFO: Performance of Cuba Library in Fortran:
 0.108000 seconds (Vegas)
 0.628000 seconds (Suave)
 0.144000 seconds (Divonne)
 0.084000 seconds (Cuhre)

Cuba.jl internally fixes CUBACORES to 0 in order to prevent from
forking julia processes that would only slow down calculations
eating up the memory, without actually taking advantage of concurrency.
Furthemore, without this measure, adding more Julia processes with
addprocs() would only make the program segfault.

Related projects

Another Julia package for multidimenensional numerical integration is
available: Cubature.jl [https://github.com/stevengj/Cubature.jl], by
Steven G. Johnson. Differently from Cuba.jl, this works on
GNU/Linux, OS X and Windows as well.

License

The Cuba.jl package is licensed under the GNU Lesser General Public License, the
same as Cuba library [http://www.feynarts.de/cuba/]. The original author is
Mosè Giordano.

Credits

If you use this library for your work, please credit Thomas Hahn. Citable
papers about Cuba Library:

	Hahn, T. 2005, Computer Physics Communications, 168, 78.
DOI:10.1016/j.cpc.2005.01.010 [http://dx.doi.org/10.1016/j.cpc.2005.01.010]. arXiv:hep-ph/0404043 [http://arxiv.org/abs/hep-ph/0404043]. Bibcode:2005CoPhC.168...78H [http://adsabs.harvard.edu/abs/2005CoPhC.168...78H].

	Hahn, T. 2015, Journal of Physics Conference Series, 608, 012066.
DOI:10.1088/1742-6596/608/1/012066 [http://dx.doi.org/10.1088/1742-6596/608/1/012066]. arXiv:1408.6373 [http://arxiv.org/abs/1408.6373]. Bibcode:2015JPhCS.608a2066H [http://adsabs.harvard.edu/abs/2015JPhCS.608a2066H].

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Cuba.jl 0.1.0 documentation

Index

 C
 | D
 | S
 | V

C

 	

 	Cuhre() (built-in function)

D

 	

 	Divonne() (built-in function)

S

 	

 	Suave() (built-in function)

V

 	

 	Vegas() (built-in function)

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Cuba.jl 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

